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Abstract 

In the present paper, dynamic and vibration behaviour of a flexible cantilever 
Euler-Bernoulli beam under moving decentralized mass with constant velocity 
has been studied that loads locating on the beam during the specified time. 
First, extract the Lagrangian law by using potential energy and kinetic 
equations, and using the Hamilton equations to obtain motion equation of a 
system in form of partial differential equations. These equations are coupled 
because of the bound mass transverse with beam vibration. The mass assumed 
decentralized and rigid body. According to the boundary conditions for a 
cantilever beam and using none dimension defined parameters; gain the 
dimensionless equations of motion of the system. Thus, to solve the integral 
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form of equation used numerical integration method (Simpson’s three-point). 
Finally, the dimensionless system of equations using numerical methods 
Rayleigh-Ritz approximated by ordinary differential equations and finite 
difference methods to solve them are discussed. To validate the survey results of 
the proposed model, compared with the motion of Euler-Bernoulli beam model 
by centralized mass movement. To more understanding this model, solve an 
example by MATLAB Software. 

1. Introduction 

There are many systems in mechanical and civil engineering that 
need to be considered as continuous systems and resolved in the next 
step, like a flexible beam carrying a moving mass to which many 
practical examples can be attributed: cars moving on the bridge; 
transportation of cranes while loading, robotic arms or using the moving 
mass that can be used as vibration controller of the beam (vibration 
stabilizer) or even under gyroscope [1, 2]. 

The main problem in the study of such systems, given the simplest 
model for beam (like Euler-Bernoulli beam), is the dependence between 
the moving mass and the beam that makes it difficulty and complicated 
to solve the equations of motion in the system. 

This issue was first proposed in the design of railway lines, later it 
was considered in other transportation engineering structures. The first 
published researches were done in this case [3, 4], then some articles 
related to this topic were published [5, 6]. There are new books on 
analyzing in different conditions [7]. Some studies examined the effects of 
mass’s high-speed motion on the beam [8, 9]. In the past studies, moment 
of inertia effect of the moving mass has been ignored and the model 
considered as a mass or a concentrated load that moves along the beam. 

In transportation engineering applications, a mass motion is usually 
considered with constant speed on a continuous beam that results in 
partial differential equations with coupled parameters related to the 
mass location. Due to the coupled parameters in the equations, they 
cannot be solved as eigenvalues with independent variables. Lateral 
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integration method has been presented to obtain the shape of modes 
related to the mass motion [10]. Although it is too difficult to obtain 
numerical results using this method, many researches have been 
published in the field [11-15]. 

The effect of moving load weight to cantilevered beam weigh that 
been studied given the moving mass load as constant, and using an 
infinite series, an exact solution presented for the model [16]. Dynamic 
stability of the Euler-Bernoulli beam’s lateral response, which is 
continuously changing with a concentrated moving mass, has been 
examined [17]. To describe the dynamic response of a beam under a 
number of moving masses, a Fourier sinusoid presented using the 
changes [18]. In another research, considering the constant moving mass, 
other algorithm is offered to solve the dynamic response of an elastic 
beam element [19]. 

Then, given shear deformation and rotary inertia moment, vibration 
response of a beam with a mass moving at a constant speed has been 
studied by using the beam theories [20]. A method presented for direct 
and accurate modelling based on Green’s functions for structures 
consisting of a beam related to the mass motion at a constant speed [21]. 

Numerical integration has been used to solve equations of motion for 
an Euler-Bernoulli cantilevered beam with respect to the mass location 
[23]. The results compared with the available experimental data and 
published reports indicate that the results are in good agreement with 
experimental data [13, 19, 22]. 

Vibration response of a beam element has also been examined in 
relation to the motion of the moving load with non-uniform velocities as 
acceleration [24]. Vibration analysis of a beam under the forces of a train 
has been done with simulating the issue as a number of concentrated 
loads and loading with constant speed [25]. 
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Other researchers studied the effect of mass motion speed on the 
beam and after extracting equations of motion for the system, solved 
them in analytical-numerical method [26]. Others examined dynamic and 
modal behaviour of an Euler-Bernoulli beam under a moving mass. Dirac 
delta function has been used to describe the location of the moving mass 
and its moment of inertia effect along the beam. 

In the following, to control the beam’s response, control algorithms 
presented with recursive parameters of displacement and speed [27]. 

2. Geometric Description of the Model 

The system consists of an Euler-Bernoulli cantilevered beam with 
following characteristics: 

Beam density ( ),ρ  beam length (L), beam cross section (A), beam 

moment of inertia (I), beam modulus of elasticity (E), and rotational 
inertia of the beam )( .bJ  

The decentralized mass is also shown with (M) as a small beam 
having a cross section ( ),mA  length ( ),mL  and rotational inertia ( )mJ  

that has same width and thickness (h) as shown in Figure 1. 
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Figure 1. Geometric modelling description. 

In the above figure, ( )txw ,  indicates the curvature in one point of the 
beam that is in x distance of cantilever side of the beam at t time, and 
( )tS  is the longitudinal direction marked on the beam’s length that the 

moving mass travels it. 

3. Obtaining Equations of Motion 

The system’s equations of motion have been obtained by using 
Hamilton’s law. The system’s energy resulted from two components of 
beam and mass motion that can be obtained separately, so that kinetic 
energy of  the beam can be expressed as follows: 

 dxwJdxwAT
L

b
L

b
2

0
2

0 2
1

2 ∫∫ +ρ=   (3.1) 

Similarly, kinetic energy of the moving mass is obtained as follows: 

( ) .2
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1 222




 +++=  wJwwswsMT mm   (3.2) 
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Potential energy of the system is only related to the energy stored in the 
beam due to the amount of its bending 

 .2
2

0
dxwEIV

L
b ∫=   (3.3) 

In the above equations, () and ( ),  respectively, indicate the 

differentiation with considering time and place parameters. 

Based on the kinetic and potential energies obtained for the system, 
Lagrangian equation can be defined as follows using Hamilton’s law: 

.bmb VTTL −+=   (3.4) 

To calculate its minimum value, the following equation can be used: 

( ) ( ) .,
2

1
wtxqstudtL

t

t
δ+δ=δ∫   (3.5) 

To make the equations of motion, in the above equation, ( )tu  is the force 
applied to the decentralized moving mass, and ( )txq ,  is the force applied 
to the beam length. Therefore, Lagrangian equation can be expressed as 
a function of the following variables: 

( )   swwwwLL ,,,,=   (3.6) 

Given the above equation in relation to parameter, it can be written that 
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(3.7) 

After inserting Lagrangian equation in the (3.7) relationship and overall 
relationship (3.5), the equations obtained as follows: Considering the 
properties of the mentioned time integration in (3.8), and integrating the 
beam equations of motion in terms of two separate components of wδ  
and sδ  in certain location of the path travelled by the mass on the beam 
( ):sx =  
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In this model, boundary conditions for the integration of partial 
differential equations of the beam motion are considered as 

( ) ( ) ( ),,2
0

txqwJwswswMdxwJEIwwA mb
L

=−+++−+ρ∫   

(3.9) 

( ) ( ).tuwwwwMsM =++    (3.10) 

On this integration, we have these boundary conditions 
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3.1. Non-dimensionalized equations of motion 

To simplify the solution, the mentioned equations of motion in (3.9) 
and (3.10) relationships are rewritten as non-dimensionalized equations 
of motion using the dimensionless parameters defined in the following: 

,,, 00 L
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xxL
wv ===   (3.12) 
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Non-dimensionalized equations of motion are obtained as follows: 

[( ) ( ) ( ) ] ( ) ,,2
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0 EI
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(3.14) 
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[ ] ( ) ,
3

0 tuIME
ALvvvvs ρ=++    (3.15) 

where ( )∆δ  is Dirac delta function. 

Based on the mentioned boundary conditions for the beam and the 
above dimensionless parameters, boundary conditions for the 
dimensionless equations of motion can be rewritten as follows: 
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3.2. Solving equations of motion 

In the previous section, equations of motion governing the system 
obtained as partial differential equations that were non-linear, 
interdependent, and had two interdependent parameters of time and 
place. It is too difficult to solve these equations numerically and 
analytically therefore to simplify the problem, Rayleigh-Ritz method has 
been used that consists parameters of time and place as two independent 
functions, so partial differential equations can be approximated to 
ordinary differential equations. In this method, the basic assumption to 
solve the beam equations has been considered as follows: 

( ) { ( ) ( )},, 00 τϕ=τ ∑ jjj
Txxv   (3.17) 

where ( )τ,0xv  is the vertical displacement of a point in the beam in a 

distance of 0x  from the end of the beam’s cantilever side at τ  time. In 

this approximation, it is assumed that ( )0xjϕ  is a function of the specific 

shape so when it is inserted in (3.15) relationship, partial differential 
equation is changed into an ordinary differential equation that is in 
terms of time and can be solved easily using the usual solutions. 
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3.2.1. Obtaining function shape of ( )0xjϕ  

In the method used, it is necessary that a mode shape function be 
clear for solving derived equations yet despite the existence of the mass, 
mode shapes of a beam cannot be used normally, while the involvement 
of decentralized mass parameter of location increases the accuracy of the 
mathematical model. Mode shape function can be obtained considering 
the initial and boundary conditions imposed on the beam in the mass 
location. In this regard, the defined method of Stanisic [5] has been used 

( ) ( ) ., 00
τΩ=τ iexZxv   (3.18) 

In the defined mixed shape for vertical displacement of the beam, shows 
the non-dimensionalized frequency. 

Homogeneous part of the equations of motion describes the beam’s 
motion mode shape function that is expressed as follows: 

[ )( ( ) ( )] .02 00000
0

=−δ−++∈+−+ ∆∫ dxsxvJvsvsvvJvv mdnd
L   

(3.19) 

By inserting (3.18) relationship in (3.19), and considering the two 
separate areas of the beam (left and right side of the beam) related to the 
mass location, the equations are obtained as follows: 
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Common and general shape for the solution of (3.20) and (3.21) 
differential equations are considered as 

( ) ( ) ( ) ( ) ( ),coshsinhcossin 00000 xDxCxBxAxZ β+β+β+β=   (3.22) 

where .2 Ω±=β  
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Considering boundary conditions 00 =x  and 0=Lx  in the 

functions ( )0xZL  and ( ),0xZR  relationship (3.22) can be expressed as 

follows for the left and right side of the beam related to the decentralized 
mass location 

( ) ( ( ) ( )) ( ( ) ( )) ,0,coshcossinhsin 0000000 sxxxBxxAxZ LLL <≤β−β+β−β=  

(3.23) 

( ) ( ( )) ( )( )( )1sinh1sin 000 −β+−β= xxAxZ RR  

( )( ) ( )( )( ) .,1cosh1cos 0000 LxsxxBR ≤≤−β−−β+  (3.24) 

Applying the imposed conditions on the beam (in the mass location) 
caused this situation, unknown coefficients RRLL BABA ,,,  in the 

above equations can be caculated as .00 sx =  

So we have following conditions: 
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Based on the mentioned conditions, unknowns can be obtained in terms 
of each other, so that if they are expanded, there will be 

( ( ) ),2224 Ω−β+Ω−β= mdndL JJAA  (3.26) 

( ( ) ),2224 Ω−β+Ω−β= mdndL JJBB  (3.27) 

( ( ) ),2224 Ω−β+Ω+β−= mdndR JJCA  (3.28) 

( ( ) ).2224 Ω−β+Ω+β−= mdndR JJDB  (3.29) 

After calculating the invariables, vertical displacement function can be 
expressed as follows: 
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( ) ( ) ( ),;, 000 τ=τ TsxZxv   (3.30) 

where 
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3.2.2. Equations of motion considering two shapes of the first 
mode 

To show the solution, the first two mode shapes of the beam’s vertical 
displacement function series have been used 

( ) ( ) ( ).;, 00
2

10 τ=τ ∑ = iii
TsxZxv   (3.32) 

Using relationship (3.32), equations of kinetic and potential energy in the 
system components can be expressed as follows: 
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As it is clear in the above equations, there are spatial integrals that are 
defined as integral invariables iC  
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In order to calculate the above integral invariables, Simpson’s three-
point numerical integration method has been used that in the two left 
and right sides of the beam, two points in Simpson method are the same 
first and end points of the interval, and the third point is considered as 
the midpoint of the interval, so that 
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Then, mode shape function can be rewritten as follows: 

( ) ( ) ( ) ( )( )00000 sinhsin; xxsAsxZ iiiLiL β−β=  

( ) ( ) ( )( ),coshcos 000 xxsB iiiL β−β+  (3.40) 
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( ) ( ) ( )( ) ( )( )( )1sinh1sin, 00000 −β−−β= xxsAsxZ iiiRiR  

( ) ( )( ) ( )( )( ).1cos1cos 000 −β−−β+ xxsB iiiR  (3.41) 

Therefore, unknown quantities in kinetic and potential energy equations 
include is ( ) ( ),, 21 ττ TT  and ( ).0 τS  By inserting new mode shape function 

in the kinetic and potential energy equations in the form of a finite 
series, and combining the response in the Lagrangian equation, a system 
of ordinary differential equations can be achieved that its general form is 
as follows: 
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  (3.42) 

where K and M are stiffness and mass matrix, the mass is non-linear and 
N indicates other non-linear parameters in the system. In the following, 
the resulting equations of motion are solved using a forward difference 
method. 

4. Simulating the Problem to Solve the  
Equations Numerically 

In the present study, a beam with a square cross-section having 
defined specifications according to Table 1, and a decentralized mass in 
the form of a beam with a rectangular cross-sectional rigid according to 
Table 2 have been considered. 
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Table 1. Specifications of a flexible Euler-Bernoulli cantilevered beam 
with a square cross-section 

Parameter of Beam Unit Sign Value 

Length cm L 100 

Width cm H 5 

Thickness cm W 5 

Density 3kg/m   2710 

Mass kg M 6.775 

Inertia Momentum 2kg.m  mJ  3.3875 

Elasticity module MPa E 70 

Table 2. Specifications of a decentralized moving mass in the form of a 
beam with a rectangular cross-section 

Parameter of Beam Unit Sign Parameter 

Length cm L 10 

Width cm H 1 

Thickness cm W 1 

Density 3kg/m   2710 

Mass kg M 0.0271 

Inertia Momentum 2kg.m  mJ  0.0001355 

Elasticity module MPa E 70 

4.1. Solving the problem with the assumption of a centralized 
moving mass 

In this section, assuming that the moving mass moment of inertia 
equals to zero, the problem is simulated and solved. So natural frequency 
of the system has been obtained for three specific positions of the moving 
mass on the longitudinal direction of its motion on the beam (at the 
beginning, middle and the end of beam), and its results presented in 
Table 3. 

 



DYNAMIC RESPONSE OF A FLEXIBLE CANTILEVER … 15

Table 3. First six natural frequencies for the system given the moving 
mass as centralized 

Number  of Natural Frequency Beginning of beam Middle of beam End of beam 

1 2.3729 5.3765 12.081 

2 2.8013 6.7445 15.068 

3 29.174 41.393 38.049 

4 31.628 44.429 44.45 

5 44.86 67.5725 50.777 

6 91.673 94.460 100.14 

In the following, to simulate the problem, the parameters defined in 
previous sections are obtained according to Table 4. 

Table 4. Parameters obtained for the system with centralized moving 
mass 

Parameters Beginning of beam Middle of beam End of beam 

1Ω  1.0463 5.3717 27.1220 

2Ω  1.4583 8.4531 42.1916 

1β  1.0229 2.3177 5.2079 

2β  1.2076 2.9074 6.4955 

In order to calculate the integral invariables in calculating the 
system’s Lagrangian equation, Simpson’s three-point numerical 
integration method has been used and its results for the three different 
positions of the mass on the beam can be seen in Table 5. 
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Table 5. Integral invariables obtained for the system with centralized 
moving mass 

Invariables Beginning of beam Middle of beam End of beam 

1C  – 0.8367 – 4.9355 – 73.7439 

2C  – 2.5166 – 15.9162 – 428.62 

3C  – 5.0762 – 39.3766 – 2509.6 

Based on the data obtained, the beam’s deflection in three different 
modes is shown in Figure 2. 

 

Figure 2. The beam’s deflection for three different modes of mass 
location in the system with centralized moving mass. 
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4.2. Solving the problem with the assumption of a decentralized 
moving mass 

In this section, the problem is solved considering that the moving 
mass moment of inertia equals a constant non-zero value. So natural 
frequency of the system has been obtained for three specific points of the 
moving mass on the longitudinal direction of its motion on the beam      
(at the beginning, middle and the end of beam), and its results presented 
in Table 6. 

Table 6. First six natural frequencies for the system given the moving 
mass as decentralized 

Number  of Natural Frequency Beginning of beam Middle  of beam End of beam 

1 2.6277 8.4817 44.113 

2 2.9156 9.9065 47.391 

3 30.364 44.45 73.862 

4 33.274 70.889 83.54 

5 44.531 112.73 652.57 

6 88.410 141.99 693.18 

In the following, to simulate the problem, the parameters defined in 
previous sections are obtained according to Table 7. 

Table 7. Parameters obtained for the system with decentralized moving 
mass 

Parameters Beginning of beam Middle of beam End of beam 

1Ω  1.2831 13.3685 361.6167 

2Ω  1.5797 18.2371 417.3563 

1β  1.1327 3.6563 19.0162 

2β  1.2569 4.2705 20.4293 

In order to calculate the integral invariables in calculating the 
system’s Lagrangian equation, Simpson’s three-point numerical 
integration method has been used and its results for the three different 
positions of the mass on the beam can be seen in Table 8. 
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Table 8. Integral invariables obtained for the system with decentralized 
moving mass 

Invariables Beginning of beam Middle of beam End of beam 

1C  – 0.9571 – 14.5981 7E28.6−  

2C  – 2.8811 – 58.1060 9E2401.1−  

3C  – 5.8274 – 217.0484 10E4488.2−  

Based on the data obtained, the beam’s deflection in three different 
modes is shown in Figure 3. 

 

Figure 3. The beam’s deflection for three different modes of mass 
location in the system with decentralized moving mass. 
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4.3. Comparing the results for two different modes of the system 

In this section, two different modes of the system consist of 
centralized moving mass and decentralized moving mass have been 
compared. 

Given the parameters obtained in the previous steps, it can be 
realized that the more the moving mass closes to the end of the beam, the 
moving mass moment of inertia will more increase. So that differences of 
the parameters will sometimes reach three times than their initial 
values. 

The beam’s deflection has been compared in two different modes of 
moment of inertia in two locations of the moving mass on the beam. The 
beam’s deflection in the two modes when the moving mass is at the 
beginning and in the middle of the beam can be seen, respectively, in 
Figures 4 and 5. 

 

Figure 4. The beam’s deflection for two different modes of moment of 
inertia in the beginning of the beam. 
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Figure 5. The beam’s deflection for two different modes of moment of 
inertia in the middle of the beam. 

Finally, to better understand the effect of moving mass moment of 
inertia on the system, normalized spatial vertical changes of the moving 
mass have been studied and compared in two different assumptions when 
the mass located in the middle of the beam. The results of this 
comparison can be seen in Figure 6. 

 

Figure 6. Comparison of normalized vertical position of the moving mass 
in two different studied modes. 
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5. Conclusion 

In the present paper, vibration behaviour of the flexible Euler-
Bernoulli cantilevered beam subjected to centralized and decentralized 
moving masses has been studied and the results presented in three 
specific positions of the moving mass. When there is no exact solution for 
solving the problem, the important point is that to what extent the 
proposed model can be validated by the future experimental results. So, 
responding the proposed example in this paper, solving it with the above-
mentioned complex method, obtaining parameters and beam’s deflection, 
and reporting the results, it’s possible to compare them with the 
experimental data in the future. 

Natural frequency in the system with centralized moving mass on the 
flexible Euler-Bernoulli beam is much lower than that of the system 
having decentralized moving mass so that there no significant difference 
in early frequencies, whereas according to the data obtained, the 
difference will be more six times at high frequencies (6-th frequency of 
the system). Thus, at high frequencies, the mass’s moment of inertia 
effect is of great importance, and cannot be ignored in problems. It is so 
clear that the more the mass closes to the end of its path on the beam, the 
system’s natural frequency more increases.  

It should be considered that the proposed model can be used in 
designing engineering algorithms to reduce the effects of the moving 
mass on the beam’s vibration behaviour or optimizing the mass motion to 
decrease the beam’s fluctuations because of its parametric solution. 
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